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We propose and experimentally realize a class of quasi-one-dimensional topological lattices whose unit cells are
constructed by coupled multiple identical resonators, with uniform hopping and inversion symmetry. In the
presence of coupling-path-induced effective zero hopping within the unit cells, the systems are characterized by
complete multimerization with degenerate −1 energy edge states for open boundary condition. Su–Schrieffer–
Heeger subspaces with fully dimerized limits corresponding to pairs of nontrivial flat bands are derived from the
Hilbert spaces. In particular, topological bound states in the continuum (BICs) are inherently present in even
multimer chains, manifested by embedding the topological bound states into a continuous band assured by bulk-
boundary correspondence. Moreover, we experimentally demonstrate the degenerate topological edge states and
topological BICs in radio-frequency circuits. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.509746

1. INTRODUCTION

Topological phases of matter transcend the paradigm of
Ginzburg–Landau theory in condensed matter physics, with
the absence of any symmetry breaking but derived from geom-
etry, and have attracted extensive investigation in various fields
over the past few decades [1–9]. Topological phases are defined
by the global wavefunctions of the dispersion bands that per-
vade the entire system rather than local orbitals, so that they are
particularly robust to local perturbations such as defects and
impurities. In essence, band structure is the sufficient condition
for the existence of topological phases. Since the first discovery
of topological phases in quantum electronic systems [1,2],
novel and exotic topological properties have been developed
in diverse platforms with their own unique advantages such as
optics [10,11], acoustics [12,13], mechanics [14], and electric
circuits [15–17] in classical regimes and ultra-cold atoms
[18,19], trapped ions [20,21], and Fock-state lattices [22,23]
in quantum regimes.

One-dimensional (1D) topological phases bring some new
insights because of their manipulability and experimental acces-
sibility. The Su–Schrieffer–Heeger (SSH) model of polyaceti-
lene [24,25], as a starting point for 1D topological models
based on tight-binding approximation, is a dimerized chain
by having two different alternating hopping amplitudes be-
tween nearest-neighboring lattice site hosts. Recently, in the
context of SSH chains, a variety of extended configurations

with new physics and phenomena have been proposed
[9,26–30]. On the one hand, special inconsistent inter-site
interactions, such as periodically modulated hopping, nonre-
ciprocal hopping, environment-induced coupling, and multi-
site coupling, have been introduced to raise a plethora of
distinct topological phenomena including but not limited to
the non-Hermitian skin effect [31–35], non-Hermitian real
spectra [36], dissipative and Floquet topological phase transi-
tion [37–40], and trimer topological phases [41–44]. On the
other hand, with respect to on-site potentials, the introduction
of on-site gain and loss not only provides a pointcut to combine
the non-Hermitianity and topological phases for widening
topological family [45–47], but also can drive topologically
trivial systems and induce topological phase transitions solely
by deliberate design [48–52].

Herein, we present a quasi-one-dimensional (quasi-1D)
tight-binding configuration without any staggered hopping
and on-site potentials. We consider unit cells of multiple iden-
tical resonators with uniform coupling between every two sites
and the same strength as the inter-cell coupling, i.e., only one
kind of coupling strength and resonators in the whole chain.
The system then forms complete multimer due to the zero ef-
fective intracell hopping induced by special coupling paths.
Conceivably, considering the bulk-boundary correspondence
(BBC), degenerate topological edge states with full localiza-
tion exist in finite systems. Interestingly, with the increase of
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resonators in the unit cell, pairs of nontrivial flat bands appear
at two fixed frequencies, which correspond to fully dimerized
subspaces derived from the Hilbert spaces. Moreover, for even
multimer chains, topological bound states in the continuum
(BICs) [53] naturally form via the bandgap of nontrivial flat
bands just covered by a trivial band. We experimentally imple-
ment the idea by using AC circuits consisting of uniform capac-
itors and inductors.

2. THEORETICAL MODELS AND EDGE STATES

We start by considering a tight-binding system consisting of n
�n ≥ 3� identical resonators coupled to each other with the
same hopping amplitude κ, as shown in Fig. 1(a). Here, we
consider a Hermitian system in which the intrinsic and cou-
pling losses of all the resonators are ignored and κ is sufficiently
small compared to the frequency of resonators ω0. The systems
can be represented by the Hamiltonian

Hn �

0
BBB@

0 κ κ � � �
κ 0 κ � � �
κ κ 0 � � �
..
. ..

. ..
. . .

.

1
CCCA

n×n

, (1)

characterized by the diagonal elements of the matrix being
zero and all the others being κ. Interestingly, there are always
degenerate states with a fixed frequency independent of n in the
system. Specifically, with reference to ω0, one of its eigenvalues
is λn � �n − 1�κ with the normalized eigenvectors jψni �
�1∕ ffiffiffi

n
p

; 1∕
ffiffiffi
n

p
,…; 1∕

ffiffiffi
n

p �0 while the others are λi � −κ where
i � 1, 2, …, n − 1 with the corresponding eigenvectors jψ ii �
�0,…; 0; 1∕

ffiffiffi
2

p �0 where the ith element jψ iii � 1∕
ffiffiffi
2

p
.

In terms of the splitting of eigenvalues, the local effective cou-
pling between the degenerate modes can be seen as zero to some
extent.

With this supposition, as shown in Figs. 1(b)–1(d), we de-
sign a class of quasi-1D lattices with the above coupling multi-
ple resonators as their unit cell. The unit cells are coupled to
their nearest neighbor through �n∕2� independent coupling
channels with the same hopping amplitudes κ. Considering the
zero effective intracell hopping, we can expect that our chains
are topologically nontrivial with complete multimerization. In
bulk momentum space, the Bloch Hamiltonian of the chain
can be written as

Hn�k� �

0
BB@

0 κ � � � κ � κe−ika

κ 0 � � � κ
..
. ..

. . .
. ..

.

κ � κeika κ � � � 0

1
CCA

n×n

, (2)

where a is the lattice constant between the units and k is the
Bloch wave number. The Bloch Hamiltonian shows that the
Bloch term κe	ika only exists in all anti-diagonal elements, pro-
vided that the diagonal term remains zero. The multichannel
inter-cell coupling term κ appears in all elements of the matrix
except the diagonal entries. Obviously, the Hamiltonian dis-
plays inversion (I) symmetry, i.e., IHn�k�I−1 � Hn�−k�. For
clarity, the system is classified into two patterns via n that is odd
or even in the following analysis. We find the analytical solu-
tions of its energy spectra expressed as

ωn,o�k� �

0
BBBBBBBBBBBBB@

−2

..

.

n∕3 − 1 − �A� � i
ffiffiffi
3

p
A−�∕2

n∕3 − 1 − �A� − i
ffiffiffi
3

p
A−�∕2

0

..

.

n∕3 − 1� A�

1
CCCCCCCCCCCCCA

κ, (3)

when n is odd where A	 � C∕B 	 B, B �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 − C3

p
� D�1∕3, C � �n − 1� cos ka∕3��n2 � 3�∕9, and

D � �n2 − n� cos ka∕6� �n∕3�3 � �n − 3�∕6. Surprisingly,
there are n − 3 flat bands equally divided at ωn � 0 and
ωn � −2κ. And only two bandgaps with the width G1 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�n − 2�2 � 1
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n − 1�2 − 1

p
� 1 and G2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n−2�2�1

p
�

n−2 exist in the energy spectra. For the case where n is even, the
eigenfrequency is given by

ωn,e�k� �

0
BBBBBBBBBBBB@

−2

..

.

n∕2 − 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2∕4� 1� n cos ka

p
0

..

.

n∕2 − 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n2∕4� 1� n cos ka

p

1
CCCCCCCCCCCCA

κ, (4)

characterized by having n∕2 − 1 flat bands at ωn � 0 and
ωn � −2κ, respectively. The (n∕2)th band and the top (nth)

Fig. 1. Theoretical tight-binding hopping model. (a) Schematic of
n �n � 3, 4, 5…� resonators coupled with each other with uniform
hopping amplitude κ. (b)–(d) Bulk model with n sites per unit cell,
with uniform hoppings, unit cells framed in red dashed box.
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band are symmetric with respect to �n∕2 − 1�κ. It is noteworthy
that as the parameter n varies, there consistently exists one
bandgap with a width of G � n − 2 due to the lower nonflat
band precisely overlapping the bandgap of the flat bands. In
both cases, the band structure of the bulk Hamiltonian is
not symmetric around zero, indicating that our chain is chiral
symmetry broken. In detail, except for the top band that ex-
ceeds zero, the other bands are always distributed between
−2κ and zero.

Figures 2(a)–2(c) show the band structures in first Brillouin
zone for different n. Here, in the presence of inversion sym-
metry, we introduce the Zak phase, defined as Z j �
−i
R π∕a
−π∕a hψk,jj∂kjψk,jidk, to characterize the topology of our

1D multimer system where j specifies the occupied band index
with corresponding Bloch wavefunctions jψk,ji [54]. We can
obtain nonzero quantized Zak phases of bands for various n,
indicating the topological nontriviality of our chains.
Particularly, the top band possesses a Zak phase of zero while
the flat bands always have Zak phases of −π. We can block-
diagonalize Hn�k� by unitary transformation U−1

n Hn�k�Un �
HBD

n �k� to show the separation between flat and nonflat bands
clearly. For the simplest case with n � 4, the unitary matrix and
the block-diagonal Hamiltonian are

U4 �
1ffiffiffi
2

p

0
BB@

1 0 1 0
1 0 −1 0
0 1 0 −1
0 1 0 1

1
CCA, (5)

HBD
4 �k� �

0
B@

1 2� e−ika 0 0
2� eika 1 0 0

0 0 −1 e−ika

0 0 eika −1

1
CAκ, (6)

respectively. As expected, the 2 × 2 blocks have the same form
as the SSH Hamiltonian where the upper one is topologically
trivial corresponding to the blue bands and the lower block is
topologically nontrivial with complete dimerization corre-
sponding to the flat bands. More generally, the bulk
Hamiltonians for larger n can be divided into a topological triv-
ial dimerized subspace and n∕2 − 1 nontrivial fully dimerized
subspaces by the unitary transformation when n is even.
Moreover, the lower trivial band for the even chain always spans
the bandgap between the flat bands by meeting the upper and
lower flat bands at the boundary and center of the first Brillouin
zone, respectively. Similarly, for odd n, we can get the block-
diagonal Hamiltonian composed of a 3 × 3 block and �n − 3�∕2
same nontrivial 2 × 2 blocks (see Appendix C for details) where
the 3 × 3 subspace owns two nontrivial lower bands in contact
with the upper and lower flat bands independently.

Considering the BBC, under the open boundary condition,
we show the normalized eigenvalue spectraωi∕κ of finite multi-
mer chains with 60 resonators in Figs. 2(d)–2(f ) and the cor-
responding wavefunctions jψ ii in Figs. 2(g)–2(i) for n � 3, 4,
and 5. Mathematically, the wavefunction solution is not unique
for the finite-size chains with n > 3, owing to the fact that the
rank of the Hamiltonian matrix is smaller than the matrix

Fig. 2. Topological edge states of multimer chains. (a)–(c) Normalized band structures with quantized Zak phases and (d)–(f ) sorted eigenvalues
of topological finite chains (composed of 60 resonators) with (g)–(i) corresponding representative wavefunctions for (a), (d), (g) n � 3; (b), (e),
(h) n � 4; and (c), (f ), (i) n � 5, respectively. Zak phases for the bands labeled by red are −π and 0 by blue in (a)–(c). The edge and bulk states in
(d)–(f ) with the corresponding intensity distributions in (g)–(i) are represented by color and gray, respectively. Particularly, the wavefunction
distributions in panels (h) and (i) represent individual instances of potential numerical solutions for n � 4 and n � 5, respectively.
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dimension. The wavefunction distributions depicted in
Figs. 2(h) and 2(i) exemplify potential numerical solutions
for n � 4 and n � 5, respectively. Correspondingly, there
are pairs of degenerate edge states marked by the colored dots
at the exact detuning −κ with the same number as the nontrivial
bands. The topological edge modes of the odd multimer chain
sit in the lower bandgap G1. Remarkably, the topological edge
states are clearly embedded in the continuous spectrum of the
lower nontrival band and are the so-called topological BICs
[53] when n is even. Because of the complete multimerization,
the wavefunctions of exact −1 energy edge modes are absolutely
localized at the two boundary cells without any distribution in
the bulk, while the bulk wavefunctions are diffused throughout
the whole chains. Therefore, the edge states are also completely
robust to the local perturbations of frequency and coupling
strength of bulk resonators.

3. EXPERIMENTAL OBSERVATIONS

We employ periodic radio-frequency inductor-capacitor (LC)
circuits featuring flexible hopping channels to experimentally
observe the tight-binding modes. Here, the lattice nodes are
capacitively coupled to ground and inductively coupled to each
other. The multimer chains can be represented by the admit-
tance matrix Jω (also termed circuit Laplacian) [17,47,55]. The
voltage response V �ω� of the nodes to an input current I �ω� at
frequency ω follows Kirchhoff ’s law: I �ω� � J�ω�V �ω�,
where the vectors I �ω� � �I 1, I2,…, I s � 0 and V �ω� �
�V 1,V 2,…,V s � 0 for s nodes circuit. For our uniform hopping
chains, using the same size capacitors C and inductors L, we
have the circuit Laplacian

J�ω� � 1

iω

��
n
L
− ω2C

�
I�H

�
(7)

with

H �

0
BBBBB@

0 −1∕L −1∕L � � �
−1∕L 0 −1∕L � � �
−1∕L −1∕L 0 � � �
..
. ..

. ..
. . .

.

1
CCCCCA

s×s

, (8)

where I is the s × s unit matrix and H can represent our theo-
retical model accurately with the hopping amplitude −1∕L.
We construct periodic LC circuits with 24 nodes for trimer
and tetramer configurations as shown in Figs. 3(a) and 4(a),
respectively. By solving the eigenvalues Ei of H numerically,
we can obtain the general admittance eigenspectral dispersion
as f i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n∕L� Ei�∕C

p
∕�2π� with degenerate edge states la-

beled by red shown in Figs. 3(b) and 4(b). It is obvious that the
edge states shown in Fig. 4(b) are located in the middle of the
continuous energy band for the tetrameric circuit. Note that
the inverted nonlinear spectra are due to the negative fre-
quency-dependent hopping amplitude of inductive coupling.

In the experiment implementation, we choose the circuit
components: C � 1 nF with	1% tolerance and L � 1.1 μH
with 	5% deviation. Details of the sample fabrication and
impedance measurements are provided in the Appendix A.
Measured impedances of nodes 1, 13, and 17 to ground
(jZ 1j, jZ 13j, and jZ 17j) versus the frequency of input circuit

are shown in Figs. 3(c) and 4(c) for trimer and tetramer chain,
respectively. The peak frequencies of the impedances are in
good agreement with the calculated eigenvalues, despite some
slight frequency shift of the measured impedance peaks due to
component tolerances. In Fig. 3(c), the highest impedance peak
near 9.57 MHz of the edge node inside the band gap (about
9.25–10.1 MHz) with impedance valleys for bulk nodes de-
notes the topological modes unambiguously. More intuitively,
we measure the impedance distribution of the degenerate
topological edge modes with strong locality at both ends at
9.57 MHz shown in Fig. 3(d). Differently, corresponding to
the calculated eigenspectrum, the impedance peak of the edge
node is accompanied by the impedance peaks of the bulk nodes
near the frequency of edge state 10.52 MHz in Fig. 4(c),

Fig. 3. Observation of topological edge states in trimer chain.
(a) Circuit diagram of the finite experimental trimer chain; unit cells
consist of three capacitors C with identical inductors L between every
two capacitors framed in gray dashed boxes. The lattice nodes are
marked by the green dots. (b) Calculated admittance eigenspectrum
of the LC circuit for C � 1 nF and L � 1.1 μH. (c) Measured
impedances between the nodes (jZ 1j, jZ 13j, and jZ 17j) and ground
versus the frequency of the circuit. (d) Location distribution of imped-
ance at the frequency f � 9.57 MHz.

Fig. 4. Observation of topological BICs in tetramer chain.
(a) Circuit diagram blueprint with unit cells framed in gray dashed
boxes and nodes marked by green dots. (b) Calculated admittance ei-
genvalues of the tetramer LC circuit for C � 1 nF and L � 1.1 μH.
(c) Frequency scan of measured impedances for representative edge
(jZ 1j) and bulk (jZ 13j and jZ 17j) nodes. (d) Impedance distribution
of topological edge mode at the frequency f � 10.52 MHz.
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representing the existence of a topological bound state in a non-
topological continuum where the bound edge states are shown
in Fig. 4(d).

4. CONCLUSION

In summary, we theoretically and experimentally demonstrated
degenerate topological edge states in a class of topological mul-
timer chains consisting of identical resonators with uniform
hopping. By designing deliberate coupling paths, the systems
exhibit full multimerization with fully dimerized SSH subspa-
ces corresponding to flat bands that can be separated from their
Hilbert spaces. We also show topological BICs by embedding
the degenerate topological bound states into a continuous band
in even chains naturally. These phenomena indicate some po-
tential applications in various fields. Our scheme is experimen-
tally accessible and can also be implemented in coupled
waveguide arrays [56], optical and acoustic coupled cavity ar-
rays [53,57], cold atom lattices [58], and three-dimensional cir-
cuit quantum electrodynamics [59]. Our work sheds new light
on the construction of topological phases.

APPENDIX A: EXPERIMENTAL SETUP

For our experimental setup, we fabricate the topological chains
on printed circuit boards (PCBs) with 24 nodes as shown in
Fig. 5. The circuit elements are all surface-mount devices
(SMDs) with a uniform Electronic Industries Alliance (EIA)
size 0603, i.e., 1206 for metric size. Specifically, we choose sur-
face mount multilayer ceramic chip capacitors (SMD MLCCs)
with the mean value of 1 nF and the tolerance of 	1% and
multilayer ferrite (MLF) inductors with the mean value of
1.1 μH and the tolerance of 	5%. Moreover, the thick film

chip resistors with the mean value of 0.1 Ω and the tolerance
of 	1% are introduced in series with the capacitors as pertur-
bations. The on-site resistors can mask frequency fluctuations
caused by capacitance and inductance tolerances to a certain
extent, because they reduce the quality value of the circuit res-
onator but do not change its frequency [55].

As shown in Fig. 6, we indirectly measure the impedances of
the nodes to ground using the vector network analyzer (VNA)
Keysight E5080B 9 kHz–20 GHz. For single-port load imped-
ance Z , the reflection coefficient S11 is given as [60]

S11 �
Z − R0

Z � R0

, (A1)

where R0 � 50 Ω is the terminal impedance of VNA port
(Port 1). By measuring the S-parameter S11 of the node, the
node impedance can be obtained by [60]

Z � 1� S11
1 − S11

R0: (A2)

Fig. 5. Photograph of circuit boards realization for (a) trimer chain and (b) tetramer chain. Unit cells of the boards are framed in the dashed boxes.
The single pin header connectors at wire junctions are the nodes of circuits. The nodes are labeled by site 1 to 24 from left to right as circled.
Inductors L between the nodes realize the hoppings and inductors to ground are to ensure a uniform frequency. Capacitors C connect each node to
ground.

Fig. 6. Schematic diagram of the experimental measurement setup
where the green dots indicate wiring for measuring.
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APPENDIX B: ADMITTANCE FORMALISM

For the basic linear components of electric circuits—resistors,
capacitors, and inductors—the current I flowing through them
versus their loading voltage V is given by

I � 1

R
V , I � C

dV
dt

,
dI
dt

� 1

L
V , (B1)

respectively, where R is the resistance of the resistor element, C
is the capacitance of the capacitor, and L is the inductance of
the inductor. Considering the harmonic circuit with the
frequency ω, for I � I 0e−iωt and V � V 0e−iωt , their effective
impedances can be expressed as

ZR�ω� � R, ZC �ω� �
1

−iωC
, ZL�ω� � −iωL: (B2)

Following Kirchhoff ’s nodal law, in the frequency domain,
the external input current I j�ω� into each node is equal to the
sum of currents flowing to their nearest neighbor nodes and
ground. For our periodic circuit composed of uniform capac-
itors and inductors with inductive coupling, ignoring the on-
site resistors, we can get the linear equation of each node:

I j�ω� � I j0 �
Xn
k�1

I jk �
V j�ω�
ZC �ω�

�
Xn
k�1

V j�ω� − V k�ω�
ZL�ω�

,

(B3)

where k is the index of nodes or ground connected to the node j
by inductors and n is the number of nodes within a unit cell.
Integrating the relations between the input current I j�ω� of
each node and their node voltage V j�ω�, the matrix equation
emerges as follows:

I �ω� � J�ω�V �ω�, (B4)

where the vectors I �ω� � �I 1, I2,…, I24� 0 and V �ω� �
�V 1,V 2,…,V 24� 0 for our 24 nodes circuit and the admittance
matrix J�ω� is

J�ω� � 1

iω

��
n
L
− ω2C

�
I�H

�
: (B5)

where I is the 24 × 24 unit matrix and the matrix

H �

0
BBBBBBBBBBBBB@

0 −1∕L −1∕L 0 0 0 � � �
−1∕L 0 −1∕L 0 0 0 � � �
−1∕L −1∕L 0 −1∕L 0 0 � � �
0 0 −1∕L 0 −1∕L −1∕L � � �
0 0 0 −1∕L 0 −1∕L � � �
0 0 0 −1∕L −1∕L 0 � � �
..
. ..

. ..
. ..

. ..
. ..

. . .
.

1
CCCCCCCCCCCCCA

24×24

,

(B6)

for trimer chain (n � 3);

H �

0
BBBBBBBBBBBBBBBBBB@

0 −1∕L −1∕L −1∕L 0 0 0 0 � � �
−1∕L 0 −1∕L −1∕L 0 0 0 0 � � �
−1∕L −1∕L 0 −1∕L 0 −1∕L 0 0 � � �
−1∕L −1∕L −1∕L 0 −1∕L 0 0 0 � � �
0 0 0 −1∕L 0 −1∕L −1∕L −1∕L � � �
0 0 −1∕L 0 −1∕L 0 −1∕L −1∕L � � �
0 0 0 0 −1∕L −1∕L 0 −1∕L � � �
0 0 0 0 −1∕L −1∕L −1∕L 0 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
.

1
CCCCCCCCCCCCCCCCCCA

24×24

, (B7)

when n � 4, i.e., for the tetramer circuit.

APPENDIX C: SUBSPACE DECOMPOSITION

As stated in the main text, the flat and nonflat bands can be
separated by unitary transformation. For the simplest case of
odd multimer chain with flat bands (n � 5), the unitary
matrix is

U5 �
1ffiffiffi
2

p

0
BBBBBB@

1∕
ffiffiffi
2

p
0 1∕

ffiffiffi
2

p
0 1

1∕
ffiffiffi
2

p
0 1∕

ffiffiffi
2

p
0 −1

1 0 −1 0 0

0 1 0 1 0

0 1 0 −1 0

1
CCCCCCA
, (C1)

and the corresponding two divided subspaces Hamiltonians are

H 3×3 �

0
B@

1∕2� ffiffiffi
2

p ffiffiffi
2

p � 1� K � 1∕2ffiffiffi
2

p � 1� K − 1
ffiffiffi
2

p
− 1� K −

1∕2
ffiffiffi
2

p
− 1� K � 1∕2 −

ffiffiffi
2

p

1
CAκ

(C2)

and

H 2×2 �
�

−1 e−ika

eika −1

�
κ: (C3)

where K 	 � ffiffiffi
2

p
e	ika∕2. The upper 3 × 3 block correspond-

ing to the three nonflat bands is topologically nontrival with
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one zero-Zak-phase top band and two −π-Zak-phase lower
bands while the 2 × 2 subspace is nontrivial SSH Hamiltonian
with fully dimerized limits. With the increase of Hilbert spaces,
the bulk Hamiltonians of odd multimer chains can be divided
into a 3 × 3 Hamiltonian Ho1 and �n − 3�∕2 same nontrivial
2 × 2 blocks Ho2 where

Ho1 �

0
B@

X� Y � � K � �n − 3�∕4
Y � � K − �n − 3�∕2 Y − � K −

�n − 3�∕4 Y − � K � X −

1
CAκ, (C4)

Ho2 �
�

−1 e−ika

eika −1

�
κ, (C5)

where X	 � �n − 3�∕4	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n − 1�∕2

p
and Y 	 � ffiffiffi

2
p �n − 1�∕

4	
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�n − 1�

p
∕2. The corresponding unitary matrix is too

lengthy to be given. And for even n, the Hilbert spaces can be
block-diagonalized into a topological trivial dimerized subspace
He1 and n∕2 − 1 nontrivial fully dimerized subspaces He2
where

He1 �
�

n∕2 − 1 n∕2� e−ika

n∕2� eika n∕2 − 1

�
κ, (C6)

He2 �
�

−1 e−ika

eika −1

�
κ: (C7)

Both Ho2 and He2 have the same format as a nontrivial SSH
Hamiltonian with full dimerization, corresponding to the
flat bands.
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